Nonlinear Adaptive Control Using Nonparametric Gaussian Process Prior Models

نویسندگان

  • Roderick Murray-Smith
  • Daniel Sbarbaro
چکیده

Nonparametric Gaussian Process prior models, taken from Bayesian statistics methodology are used to implement a nonlinear adaptive control law. The expected value of a quadratic cost function is minimised, without ignoring the variance of the model predictions. This leads to implicit regularisation of the control signal (caution), and excitation of the system. The controller has dual features, since it is both tracking a reference signal and learning a model of the system from observed responses. The general method and its main features are illustrated on a simulation example. Copyright c 2002 IFAC.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adaptive, Cautious, Predictive Control with Gaussian Process Priors

Nonparametric Gaussian Process models, a Bayesian statistics approach, are used to implement a nonlinear adaptive control law. Predictions, including propagation of the state uncertainty are made over a k-step horizon. The expected value of a quadratic cost function is minimised, over this prediction horizon, without ignoring the variance of the model predictions. The general method and its mai...

متن کامل

Nonparametric Identification of Linearizations and Uncertainty using Gaussian Process Models – Application to Robust Wheel Slip Control

Gaussian process prior models offer a nonparametric approach to modelling unknown nonlinear systems from experimental data. These are flexible models which automatically adapt their model complexity to the available data, and which give not only mean predictions but also the variance of these predictions. A further advantage is the analytical derivation of derivatives of the model with respect ...

متن کامل

Dynamic GP models: an overview and recent developments

Various methods can be used for nonlinear, dynamic-system identification and Gaussian process (GP) model is a relatively recent one. The GP model is an example of a probabilistic, nonparametric model with uncertainty predictions. It possesses several interesting features like model predictions contain the measure of confidence. Further, the model has a small number of training parameters, a fac...

متن کامل

Self-tuning Control of Non-linear Systems Using Gaussian Process Prior Models

Gaussian Process prior models, as used in Bayesian non-parametric statistical models methodology are applied to implement a nonlinear adaptive control law. The expected value of a quadratic cost function is minimised, without ignoring the variance of the model predictions. This leads to implicit regularisation of the control signal (caution) in areas of high uncertainty. As a consequence, the c...

متن کامل

Model Reference Adaptive Control using Nonparametric Adaptive Elements

Most current model reference adaptive control methods rely on parametric adaptive elements, in which the number of parameters of the adaptive element are fixed a-priori, often through expert judgment. Examples of such adaptive elements are the commonly used Radial Basis Function Neural Networks (RBF-NN) with centers allocated a priori based on the expected operating domain. If the system operat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002